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Genetic variation in plasticity of life-history traits between
Atlantic cod (Gadus morhua) populations exposed to contrasting
thermal regimes
Rebekah A. Oomen and Jeffrey A. Hutchings

Abstract: We employed common-garden experiments to test for genetic variation in responses of larval life-history traits to
temperature between two populations of Atlantic cod (Gadus morhua L., 1758) that naturally experience contrasting thermal
environments during early life due to spatial and temporal differences in spawning. Southern Gulf of St. Lawrence cod larvae
experienced faster growth in warmer water and low, uniform survival across all experimental temperatures (3, 7, 11 °C),
consistent with previous studies on this spring-spawning population. In contrast, larvae from fall-spawning Southwestern
Scotian Shelf cod collected near Sambro, Nova Scotia, lacked plasticity for growth but experienced much lower survival at higher
temperatures. Phenotypes that are positively associated with fitness were observed at temperatures closest to those experienced
in the wild, consistent with the hypothesis that these populations are adapted to local thermal regimes. The lack of growth
plasticity observed in Sambro cod might be due to costly maintenance of plasticity in stable environments or energy savings at
cold temperatures. However, additional experiments need to be conducted on Sambro cod and other fall-spawning marine fishes
to determine to what extent responses to projected changes in climate will differ among populations.

Key words: Atlantic cod, climate change, early life-history traits, Gadus morhua, local adaptation, marine fish larvae, phenotypic
plasticity, thermal reaction norm.

Résumé : Nous avons utilisé des expériences de jardin commun pour examiner la variation génétique des réactions de caractères
du cycle biologique larvaire à la température entre deux populations de morues (Gadus morhua L., 1758) caractérisées par
différents milieux thermiques naturels au début de leurs cycles biologiques respectifs, dus à des variations spatiales et tempo-
relles du frai. Des larves de morue de la partie méridionale du golfe du Saint-Laurent sont caractérisées par une croissance plus
rapide en eau plus chaude et un taux de survie faible et uniforme pour toutes les températures expérimentales (3, 7, 11 °C), ce qui
concorde avec les résultats d’études antérieures sur cette population à frai printanier. En comparaison, des larves de morue de
la partie sud-ouest de la plate-forme Néo-Écossaise, une population à frai automnal, prélevées près de Sambro (Nouvelle-Écosse),
ne présentaient pas une plasticité de la croissance, mais étaient caractérisées par des taux de survie beaucoup plus bas aux
températures plus élevées. Les phénotypes positivement associés à l’aptitude ont été observés aux températures s’approchant le
plus de celles du milieu naturel, ce qui concorde avec l’hypothèse que ces populations sont adaptées à leurs régimes thermiques
locaux. L’absence de plasticité de la croissance observée chez les morues de Sambro pourrait être due au coût élevé du maintien
de la plasticité dans des milieux stables ou à des économies d’énergie à basse température. D’autres expériences doivent
toutefois être réalisées sur les morues de Sambro et d’autres poissons à frai automnal afin de déterminer l’ampleur des variations
futures entre populations des réactions aux changements climatiques anticipés. [Traduit par la Rédaction]

Mots-clés : morue, changement climatique, caractères du début du cycle biologique, Gadus morhua, adaptation locale, larves de
poisson marin, plasticité phénotypique, norme de réaction thermique.

Introduction
Knowledge of the capacity of a species or population for pheno-

typic change, and how this capacity evolves, is fundamentally
important for predicting how an organism will be affected by natural
and anthropogenic environmental variability. Just as genetic varia-
tion can be manifested by phenotypic differences among popula-
tions, it can also underlie differences in the capacities of populations
for phenotypic change (i.e., levels of phenotypic plasticity). Iden-
tifying intraspecific variation in phenotypic responses and the
evolutionary mechanisms that shape it allows for better predic-
tions of differential population responses to directional environ-

mental changes, such as those expected to occur due to global
climate warming.

Examining genetic variation in reaction norms, which repre-
sent the range of phenotypes expressed by a genotype across an
environmental gradient (Woltereck 1909; Schmalhausen 1949),
can be extremely useful in this regard. When determined experi-
mentally by rearing different genetic groups under the same set of
environmental conditions (e.g., common-garden experiments), re-
action norms allow for direct comparisons of plastic responses
between families, populations, or species while controlling for
environmental influences (e.g., Conover and Present 1990; Schultz
et al. 1996; Broggi et al. 2005; Saldaña et al. 2005). When constructed
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across both native and atypical environments, reaction norms can
reveal local adaptation among populations based on whether op-
timal phenotypes (i.e., those associated with relatively high fitness)
are produced under native conditions compared with foreign
ones. Reaction-norm slopes, which represent levels of phenotypic
plasticity and short-term responses to environmental change, are
also expected to be under selection (Bradshaw 1965; Schlichting
1986; Lande 2009). Thus, population variability in reaction-norm
slopes can be indicative of local adaptation, providing insight into
how populations might respond differently to changes in their
environments.

Due to their reliance on external heat sources, ectotherms are
considered to be especially vulnerable to climate change (Krenek
et al. 2012; Paaijmans et al. 2013). Predictions of their responses to
directional environmental change are complicated by the fact
that many species exhibit variation in levels of thermal plasticity
among different latitudes (e.g., Conover and Present 1990; Liefting
et al. 2009), altitudes (e.g., Sinervo and Adolph 1994; Ficetola and
DeBernardi 2005), and habitats (e.g., Bronikowski 2000; Liefting
and Ellers 2008) that are characterized by different levels of spa-
tial and temporal environmental heterogeneity. Pelagic marine
fish larvae can experience a variety of thermal regimes across
their range due to spatial variation in hydrography. For example,
the Canadian Gulf of St. Lawrence is characterized by large sea-
sonal fluctuations (Yashayaev and Zveryaev 2001) and strong ver-
tical gradients (Drinkwater and Gilbert 2004). In contrast, the
intense tides that occur from eastern North America’s Southwest-
ern Scotian Shelf to the Bay of Fundy and Gulf of Maine cause
vertical mixing that homogenizes the water column and weakens
seasonal cycles (Garrett et al. 1978; Drinkwater and Gilbert 2004).
Temporal variation in spawning also contributes to differences in
the thermal environments marine fishes are exposed to during
early life, particularly in temperate climates with large seasonal
fluctuations. Understanding the impact of this thermal variation
on larval plasticity is essential for predicting the short-term re-
sponse of marine fish populations to global climate change be-
cause per capita population growth rate can be heavily dependent
on growth and mortality during the larval stage (Anderson 1988;
Cushing 1990).

Atlantic cod (Gadus morhua L., 1758) is a demersal marine fish of
profound ecological and socioeconomic importance throughout
the North Atlantic. Cod inhabit a wide variety of thermal environ-
ments that promote localized thermal adaptation across their
range (Bradbury et al. 2010, 2013) and substantial variation in
spawning time exists among populations (e.g., Lett 1980; Brander
and Hurley 1992; Myers et al. 1993). Previous work has documented
genetic variation in plasticity for larval life-history traits (Hutchings
et al. 2007; Oomen and Hutchings 2015a) and juvenile body mor-
phology (Marcil et al. 2006a, 2006b) across a limited range of tem-
peratures. In the larval studies, these represent native or warmer
conditions than those typically experienced in the wild, raising
the question as to whether these responses are also observed at
colder temperatures.

Here, we present evidence for genetic differences in thermal
reaction norms for two key fitness-related traits, larval growth
and survival, between two populations of cod that naturally expe-
rience contrasting thermal environments during early life and
have been found to exhibit drastically different responses to warmer
temperatures (Oomen and Hutchings 2015a). We employed a
common-garden experimental protocol to construct thermal re-
action norms across a two-fold wider range of temperatures than
has been examined previously and that encompasses both native
and atypical environments of both populations. We compare pat-
terns of plasticity among populations and traits to assess adapta-

tion to local thermal regimes and interpret our results in light of
the directional changes in temperature predicted to occur due to
global climate change.

Materials and methods

Study populations
We conducted common-garden experiments on cod from

(1) Southern Gulf of St. Lawrence (Northwest Atlantic Fisheries
Organization (NAFO) division 4T; 47°N, 61°W) and (2) Southwest-
ern Scotian Shelf near Sambro, Nova Scotia (NAFO division 4X;
44°25=N, 63°30=W) (Fig. 1a). Cod from these areas will be referred
to throughout the text as Southern Gulf and Sambro, respectively.
Southern Gulf cod spawn from April to September (ICES 1994)
with peak spawning occurring in May and June (Lett 1980); the
larvae experience relatively warm and highly variable tempera-
tures (Fig. 2), increasing from 6.0 ± 2.1 °C (mean ± SD) in June to
10.0 ± 3.9 °C in August (Fig. 1b). Sambro cod comprise a spawning
group on the Southwestern Scotian Shelf and spawn from Novem-
ber to December (Brander and Hurley 1992; Hutchings et al. 1999).
Consequently, Sambro larvae experience colder and less variable
temperatures than those experienced by Southern Gulf cod
(Fig. 2), decreasing from 6.8 ± 1.5 °C in November to 1.9 ± 1.5 °C in
February (Fig. 1b). The duration of the larval stage (from hatch to
12 mm standard length) is dependent on growth rate and is, thus,
expected to differ among temperatures and populations (e.g.,
42 days at 6 °C in northeast Arctic Atlantic cod (Otterlei et al. 1999).

Common-garden experiments
Adult cod from Southern Gulf and Sambro were captured from

the wild immediately prior to their peak spawning seasons in
early May 2011 and early November 2011, respectively, and trans-
ported to Dalhousie University for spawning. Sample sizes were
34 and 51 cod from Southern Gulf and Sambro, respectively.
Adults were allowed to spawn undisturbed in a 684 m3 pool tank
at Dalhousie University at approximately 8 °C and fed dry pellets
daily.

Eggs were sampled approximately 4 weeks after they were first
observed in mesh egg collectors positioned near the surface out-
flows of the pool tank and were incubated in 130 L flow-through
tanks at 7 °C until hatching. To increase the probability that a
substantial number of families was represented within each
spawning group, fertilized eggs were collected over four consecu-
tive days. To evaluate this assumption and to test for variability in
family-level reaction norms, a random sample of larvae was col-
lected from each population at the beginning and end of the
experiment and tissue samples were obtained from the adults
after spawning was complete. Parents and offspring were genotyped
at five microsatellite loci, using established protocols (Hardie et al.
2006), and the number of families was determined to be at least 15
(Supplementary Table S1)1 and 29 (Supplementary Table S2)1 using
COLONY (Jones and Wang 2010) (for details see Oomen and
Hutchings 2015a).

The majority of eggs hatched at 10 days post fertilization. Cod
larvae initially depend on their yolk sac for nutrition until exog-
enous feeding begins a short time after hatch (90 h post hatch at
7 °C; Hall et al. 2004). Yolk-sac larvae within 72 h post hatch were
transferred to experimental tanks to a density of 60 larvae/L. Lar-
vae were reared in 20 L aquaria with 1200 larvae per replicate at
three temperatures (3 ± 1, 7 ± 1, and 11 ± 1 °C) with three (Sambro)
or four (Southern Gulf) replicates per treatment. On the day of
transfer (day 0), the temperature of all tanks was set to 7 °C. The
following day, the water in the tanks was gradually changed to the
experimental temperatures over the course of 12 h.

1Supplementary tables are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjz-2015-0186.
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Larvae were fed rotifers at a density of 4500 prey/L, three times
per day (at approximately 0900, 1300, and 1700). Larvae were fed
Isochrysis-enriched rotifers from day 1 to day 10 and then Ori-Green
(Skretting) enriched rotifers from day 11 to day 29. Larvae were
reared under 24 h light (as recommended by Puvanendran and
Brown 2002) at 2000 lx; water temperatures were monitored daily.

On day 0, 60 larvae were randomly sampled for initial length
measurements, hereafter referred to as “length at hatch”. On
day 29, the number of larvae alive in each tank was counted and
10 larvae from each tank were sampled for length measurements.
Survival was recorded as the number of larvae alive in each tank,
relative to the number alive at day 0. We used AxioVision image

Fig. 1. (a) Sampling locations of spawning adults for the two study populations of Atlantic cod (Gadus morhua). (b) Depth-averaged (0–50 m)
water temperatures (°C; mean ± 1 SD) for the first 3 months after the initial peak spawning months (i.e., June–August (Southern Gulf) and
December–February (Sambro)). Mean temperatures were estimated by using all available data from 1914 to 2009 in the Bedford Institute of
Oceanography’s Hydrographic Climate Database (available from http://www.bio-iob.gc.ca/science/data-donnees/base/data-donnees/climate-
climat-en.php).

Fig. 2. Depth-averaged (0–50 m) water temperatures for the first 3 months after the initial peak spawning months (i.e., 1 June to 31 August
(Southern Gulf) and 1 December to 29 February (Sambro)) using all available data from 1914 to 2009 in the Bedford Institute of Oceanography’s
Hydrographic Climate Database (available from http://www.bio-iob.gc.ca/science/data-donnees/base/data-donnees/climate-climat-en.php).
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analysis software (Zeiss) to measure standard length, according to
Kahn et al. (2004). Length at day 29 was used as a proxy for growth,
following Hutchings et al. (2007).

Data analysis
The experiments described here differ from a classical common-

garden experimental design in that populations were studied at
different times, necessitated by differences in spawning times.
Although this variation might influence the mean trait values of a
reaction norm, it is unlikely to affect the slopes unless the un-
known factor also has an interacting effect with temperature
for the traits in question. However, we previously found that
reaction-norm slopes did not differ for larval growth (Supplemen-
tary Table S3)1 or survival (Supplementary Table S4)1 between the
experiment performed on Southern Gulf cod in the present study
and one performed using similar protocols in 2003 by Hutchings
et al. (2007), despite differing reaction-norm elevations (Oomen
and Hutchings 2015a). Therefore, we only compare reaction-norm
slopes and refrain from interpreting population differences in
reaction-norm elevations between experiments conducted at dif-
ferent times.

All statistical analyses were performed in R (R Development
Core Team 2012). A one-way analysis of variance (ANOVA) was
conducted on length at hatch to determine whether or not the
size of newly hatched larvae differed among populations. Reaction
norms for larval growth were constructed for each population, using
a linear mixed-effects model with population, temperature,
and their interaction as fixed effects and tank as a random
effect nested within temperature. A significant interaction term
is indicative of a genotype × environment interaction (i.e., ge-
netic variation in reaction-norm slopes). Post hoc contrasts were
used to determine population-specific levels of plasticity (i.e.,
temperature effects) and identify significant differences in reaction-
norm slopes between populations.

Reaction norms for growth have been shown to differ at the family
level in some fish species (e.g., Chinook salmon, Oncorhynchus
tshawytscha (Walbaum in Artedi, 1792); Evans et al. 2010). If this is
true for cod, then there is the potential for families present in
high proportions in the experiment to bias the resulting reaction
norms. However, we found no significant difference in reaction-
norm slopes among Sambro families (F[8,54] = 0.98, P = 0.46; Sup-
plementary Table S51). Although it was not possible to test for a
family effect in Southern Gulf cod, the growth reaction-norm
slope in the upper temperature range did not differ from that
documented in a previous experiment having more than twice
the number of confirmed families (Oomen and Hutchings 2015a;
Supplementary Table S31).

Survival reaction norms were constructed using back-transformed
model estimates from a generalized linear model with a quasi-
binomial distribution and logit link with population, temperature,
and their interaction as the fixed effects. To test for an interaction,
survival for all tanks was increased by one larva (0.08%) to elimi-
nate zeros in the data set. The identity link was used instead of the
logit link so that the reaction-norm elevations (i.e., intercepts) did
not influence the test. Deviance tables were used to determine the
best model, using �2 tests and the forward stepwise method. Post
hoc contrasts were used to identify population-specific tempera-
ture effects and differences in reaction-norm slopes among popu-
lations.

Results

Growth reaction norms
Larval length at hatch differed among populations (F[1,118] =

136.96, P < 0.001) with Sambro larvae (4.92 ± 0.03 mm; mean ± SE)
being larger than Southern Gulf larvae (4.18 ± 0.03 mm). Growth
reaction norms revealed significantly different responses to tem-
perature between Sambro and Southern Gulf larvae (Fig. 3), re-

flected by a significant population × temperature interaction
(F[2,127] = 21.26, P < 0.001; Table 1). A contrast analysis revealed that
Southern Gulf larvae exhibited thermal plasticity for growth,
with a ≈56% greater length when reared at 11 °C (8.84 ± 0.28 mm)
than when reared at 3 °C (5.68 ± 0.20 mm), whereas the growth of
Sambro larvae did not change significantly with temperature
(Table 2). The population variation in growth responses was evi-
dent at both the lower (3–7 °C: t = –2.111, P = 0.018) and the upper
(7–11 °C: t = 3.869, P < 0.001) ranges of experimental temperatures,
although the difference in slopes at the lower temperature range
was not significant after correcting for multiple comparisons
(Table 2).

Survival reaction norms
Survival differed among temperatures and populations, rang-

ing from 0.2% (Southern Gulf at 7 °C) to 27.3% (Sambro cod at 3 °C).
Thermal reaction-norm slopes for survival differed significantly
between Southern Gulf and Sambro larvae (P < 0.001; Fig. 4,
Table 3), with Sambro larvae experiencing greater plasticity than
Southern Gulf larvae. Survival of Sambro larvae decreased with
increased temperature: survival at 7 °C was 19% lower than that at
3 °C (P < 0.001; Table 4) and declined an additional 4% at 11 °C,
although this decrease was not significant (P = 0.109; Table 4).
Conversely, survival of Southern Gulf larvae did not differ be-
tween temperature treatments (3–7 °C: P = 0.352; 7–11 °C: P = 0.648;
Table 4). The thermal responses exhibited by the two populations
differed significantly at the lower (3–7 °C: P = 0.001) and margin-
ally in the upper (7–11 °C: P = 0.098) range of temperatures studied,
although variation in slopes in the upper range was not signifi-
cant after correcting for multiple comparisons (Table 4).

Discussion

Larval cod plasticity in growth and survival
We found highly divergent thermal reaction norms for larval

growth and survival between two Atlantic cod populations that
naturally experience contrasting thermal environments during
the larval stage: relatively warm and variable (Southern Gulf) and
relatively cold and invariant (Sambro) (Fig. 2). When plasticity was
observed for either trait, the best phenotype, from a fitness per-
spective, was observed at temperatures similar to those typically
experienced in the wild: Southern Gulf larvae grew faster at
warmer temperatures and survival of Sambro larvae was higher at

Fig. 3. Thermal reaction norms for growth of larval Atlantic cod
(Gadus morhua) based on standard length at 29 days post hatch
(mean ± 1 SE).
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colder temperatures. Presuming that high survival during the lar-
val stage results in higher fitness, the observed variation in reac-
tion norms is consistent with the hypothesis that these populations
are adapted to their local thermal regimes.

The thermal response of Southern Gulf larvae was consistent
across a wide range of temperatures potentially encountered in
the wild, and the response to warmer temperatures was similar to
those previously documented for spring-spawning cod popula-
tions (Hutchings et al. 2007; Oomen and Hutchings 2015a). How-
ever, unlike Hutchings et al. (2007), we did not find survival to be
greater at higher temperatures for cod that experience relatively
cold temperatures during the larval stage. Sambro larvae gener-
ally experience colder temperatures than previously studied

Northwest Atlantic cod populations (Oomen and Hutchings 2015a),
yet experience a drastic decrease in survival in the laboratory with
increasing temperature. Therefore, mean water temperatures
alone are insufficient in explaining population variation in ther-
mal reaction norms. Our findings suggest that thermal variability
might play a major role in shaping thermal responses in larval
cod, although the relative importance of stochastic fluctuations
and predictable seasonal changes in temperature (i.e., spring
warming in the Southern Gulf and autumn cooling on the Scotian
Shelf) remains unclear.

Contrasting patterns of plasticity and canalization between di-
rect fitness traits (e.g., survival and reproduction) and those indi-
rectly related to fitness (e.g., morphological or physiological
traits) are predicted between populations that experience differ-
ent levels of environmental variability (Conover and Schultz 1995;
Liefting et al. 2009), although the distinction between trait types is
not always clear. For example, growth rate is widely regarded as a
fitness trait; however, it is not always maximized. Many ecto-
therms exhibit countergradient variation in growth (e.g., Schultz
et al. 1996; Conover et al. 1997; Richter-Boix et al. 2010), wherein
southern genotypes have lower growth-rate capacities than north-
ern ones (Conover and Schultz 1995; Yamahira and Conover 2002).
The apparent environmental canalization of growth in Sambro
larvae might be due to a cost associated with maintaining a plastic
growth response or a lack of compensatory evolution in stable
environments. Conversely, survival was severely reduced in Sam-
bro larvae as temperatures diverged from those experienced in
the wild. Survival (to a given age) represents an ultimate fitness
trait in the sense that high survival is essentially always adaptive
and thus should be resistant to environmental perturbation within
the natural range. Our findings suggest that Sambro larvae have
not evolved a compensatory response to cope with temperatures
beyond the narrow range they experience, resulting in decreased
fitness in new environments, while greater growth plasticity in
Southern Gulf larvae suggests they might have evolved flexibility
in the face of thermal variability that enables them to adjust
energy expenditures so that survival is unaffected across a wide
range of temperatures.

Table 1. Effects of population and temperature on growth of larval Atlantic cod (Gadus
morhua).

Model term df Sum of squares Mean of squares F P

Population 1 1.59 1.59 3.18 0.077*
Temperature 2 21.23 10.61 21.16 <0.001**
Population × temperature 2 21.33 10.66 21.26 <0.001**

Model term Variance Standard deviation

Tank 0.09 0.30
Residual 0.50 0.71

Note: Symbols denote significance at the following levels of �: *, 0.1; **, 0.05.

Table 2. Contrast analysis of the effects of population and temperature on growth of larval
Atlantic cod (Gadus morhua).

Contrast Estimate SE t P

Temperature effects
Sambro at 7 °C vs. Sambro at 3 °C −0.13 0.30 −0.41 0.342
Sambro at 7 °C vs. Sambro at 11 °C 0.04 0.30 0.15 0.442
Southern Gulf at 7 °C vs. Southern Gulf at 3 °C −1.13 0.36 −3.10 0.006**
Southern Gulf at 7 °C vs. Southern Gulf at 11 °C 2.03 0.41 4.92 <0.001**

Interactions
Sambro slope vs. Southern Gulf slope (from 7 to 3 °C) −1.00 0.47 −2.11 0.032++

Sambro slope vs. Southern Gulf slope (from 7 to 11 °C) 1.98 0.51 3.87 <0.001**

Note: Symbols denote significance at the following levels of �: **, 0.05 (with Bonferroni correction);
++, 0.05 (without Bonferroni correction). A Bonferroni correction for all possible contrasts of interest (n = 6)
changes the critical P values to 0.017 (� = 0.1) and 0.008 (� = 0.05). Contrasts are described as A vs. B, where
the estimate is the change in length from A to B.

Fig. 4. Thermal reaction norms for percent survival of larval
Atlantic cod (Gadus morhua) at 29 days post hatch (mean ± 1 SE;
contained within the symbols for the Southern Gulf).
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Caveats
Common-garden experiments are one of the most effective

means of isolating the genetic basis of phenotypic variation, as-
suming maternal effects (nongenetic effects of the mother’s envi-
ronment or phenotype on the offspring phenotype; Marshall
2008) are controlled to the greatest extent possible (Conover and
Baumann 2009; Hutchings 2011). Ideally, second- or third-generation
laboratory cod would be used to eliminate maternal effects. How-
ever, the long generation time of Atlantic cod makes this unfeasi-
ble. To reduce potential maternal effects that can be exacerbated by
stress in breeding females, adults in the present study were accli-
matized to a common spawning environment for at least 4 weeks
prior to the first egg collection and spawning was allowed to
proceed undisturbed in a semi-natural environment. Maternal ef-
fects in fishes are mainly caused by variation in egg size, which
influences size at hatch (Conover and Schultz 1995; Marshall
2008). Although length at hatch differed between populations, it
was not positively associated with growth. Southern Gulf larvae
were smaller at hatch, yet grew equal to or more than Sambro
larvae, depending on temperature. Indeed, we found no relation-
ship between length at hatch and growth or survival responses in
common-garden experiments on five populations (Oomen and
Hutchings 2015a). Furthermore, the optimal phenotypes were not
observed at temperatures most similar to those experienced by
the adults prior to (4 and 9 °C for Southern Gulf and Sambro,
respectively; data not shown) or during (8 °C) spawning, as was the
case in a rare example of transgenerational plasticity in a verte-
brate (Salinas and Munch 2012). Therefore, we interpret the ob-
served variation in growth and survival reaction norms as being
the result of genetic differences between populations, although it
is not possible to entirely rule out the influence of maternal ef-
fects.

High mortality is natural for early life stages of marine fish
(Anderson 1988) and is common in laboratory-reared larval cod
(e.g., Otterlei et al. 1999, 2002; Hutchings et al. 2007). For example,
Hutchings et al. (2007) reported survival rates of 1.6%–5.7% using
nearly identical protocols to the present study. Survival of South-
ern Gulf larvae was relatively low in the present study (0.2%–0.8%),
which may have resulted in a lack of sensitivity for detecting
temperature effects on survival for this population. However,

none of the treatments suffered complete mortality and the re-
sponse did not differ from that documented by a previous exper-
iment with higher survival rates (Supplementary Table S4).1

If size-selective mortality were responsible for the observed dif-
ferences in growth reaction norms, we would expect to see
changes in length corresponding to changes in survival. This was
not the case. For example, there was no difference in length of
Sambro larvae between temperature treatments despite a more
than six-fold difference in survival. Furthermore, growth reaction
norms for Southern Gulf cod did not differ between two experi-
ments with different survival rates (Supplementary Table S3).1

Plastic responses to directional shifts in temperature
Given the high levels of plasticity in life-history traits in some

cod populations, even a small, sustained change in ocean temper-
ature could have major impacts on per capita population growth
rate and recovery (Drinkwater 2005). Our study suggests that a
2–4 °C increase in mean temperature, as predicted by climate
models to occur by the year 2100 (IPCC 2007), could potentially
result in faster larval growth for Southern Gulf cod. Although we
did not find a direct effect of temperature on Southern Gulf larval
survival, in the wild survival would likely increase with growth, as
a shorter larval stage reduces the risk of predation (Anderson
1988). Conversely, our findings suggest that Sambro larval growth
would be unaffected by rising water temperatures, but they would
experience higher mortality. Thus, rising ocean temperatures
might be associated with a net increase in productivity for South-
ern Gulf cod but a decline in that of Sambro cod. Such variation in
thermal responses should be considered along with behavioural
responses (i.e., range shifts) and other ecosystem variables (re-
viewed by Pörtner and Peck 2010) to form population-specific
management and recovery plans for cod in the face of global
environmental change.

Conclusion
We documented genetic divergence in thermal plasticity for

larval growth and survival between two cod populations across a
broader range of thermal environments than had been examined
previously. Variation in thermal reaction norms suggests these
populations might be adapted to their local thermal regimes and

Table 3. Deviance table of the effects of population and temperature on survival of
larval Atlantic cod (Gadus morhua) from Southern Gulf and Sambro.

Model term df Deviance Residual df Residual deviance P

Null — — 20 2774.97 —
Population 1 1819.71 19 955.26 <0.001**
Temperature 2 118 17 837.26 0.312
Population × temperature 2 577.03 15 260.23 <0.001**

Note: Symbols denote significance at the following level of �: **, 0.05. P values were obtained from
�2 tests that were used to determine if the model fit improved significantly by sequentially adding
population, temperature, and their interaction to the null model.

Table 4. Contrast analyses of the effects of population and temperature on survival of larval
Atlantic cod (Gadus morhua).

Contrast Estimate SE t P

Temperature effects
Sambro at 7 °C vs. Sambro at 3 °C 13.49 3.11 4.34 <0.001**
Sambro at 7 °C vs. Sambro at 11 °C −3.85 2.26 −1.70 0.109
Southern Gulf at 7 °C vs. Southern Gulf at 3 °C 0.62 0.64 0.96 0.352
Southern Gulf at 7 °C vs. Southern Gulf at 11 °C 0.25 0.53 0.47 0.648

Interactions
Sambro slope vs. Southern Gulf slope (from 7 to 3 °C) −12.87 3.17 −4.06 0.001**
Sambro slope vs. Southern Gulf slope (from 7 to 11 °C) 4.10 2.32 1.77 0.098+

Note: Symbols denote significance at the following levels of �: **, 0.05 (with Bonferroni correction); +, 0.1
(without Bonferroni correction). A Bonferroni correction for all possible contrasts of interest (n = 6) changes
the critical P values to 0.017 (� = 0.1) and 0.008 (� = 0.05). Contrasts are described as A vs. B, where the
estimate is the change in survival from A to B.
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that their responses to potential future changes in ocean temper-
ature will differ substantially. Furthermore, our findings suggest
that spatial variation in mean water temperature is not sufficient
for explaining adaptive divergence in thermal responses among
cod populations and that thermal variability might play a role in
shaping plasticity. The present study contributes to a rich and
rapidly expanding body of knowledge on genetic variation in plas-
tic responses in fishes (reviewed by Hutchings 2011 and Oomen
and Hutchings 2015b), information vital to enhancing our under-
standing of how ectotherms respond to changing environments.
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